8wDlpd.png
8wDFp9.png
8wDEOx.png
8wDMfH.png
8wDKte.png

浅拷贝、深拷贝和普通赋值操作有什么区别?

Dreamify App 2月前

83 0

导入 copya = \'deepak\'b = 1, 2, 3, 4c = [1, 2, 3, 4]d = {1: 10, 2: 20, 3: 30}a1 = copy.copy(a)b1 = copy.copy(b)c1 = copy.copy(c)d1 = copy.copy(d) print(\'immutable - id(a)==id(a1)\', id(a...

import copy

a = "deepak"
b = 1, 2, 3, 4
c = [1, 2, 3, 4]
d = {1: 10, 2: 20, 3: 30}

a1 = copy.copy(a)
b1 = copy.copy(b)
c1 = copy.copy(c)
d1 = copy.copy(d)


print("immutable - id(a)==id(a1)", id(a) == id(a1))
print("immutable - id(b)==id(b1)", id(b) == id(b1))
print("mutable - id(c)==id(c1)", id(c) == id(c1))
print("mutable - id(d)==id(d1)", id(d) == id(d1))

我得到以下结果:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False

如果我执行深度复制:

a1 = copy.deepcopy(a)
b1 = copy.deepcopy(b)
c1 = copy.deepcopy(c)
d1 = copy.deepcopy(d)

结果是一样的:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False

如果我进行赋值操作:

a1 = a
b1 = b
c1 = c
d1 = d

结果是:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) True
mutable - id(d)==id(d1) True

有人能解释一下这些副本之间到底有什么区别吗?这和可变和不可变对象有关吗?如果是的话,你能给我解释一下吗?

帖子版权声明 1、本帖标题:浅拷贝、深拷贝和普通赋值操作有什么区别?
    本站网址:http://xjnalaquan.com/
2、本网站的资源部分来源于网络,如有侵权,请联系站长进行删除处理。
3、会员发帖仅代表会员个人观点,并不代表本站赞同其观点和对其真实性负责。
4、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
5、站长邮箱:yeweds@126.com 除非注明,本帖由Dreamify App在本站《dictionary》版块原创发布, 转载请注明出处!
最新回复 (0)
  • 对于不可变对象,创建副本没有多大意义,因为它们不会改变。对于可变对象, assignment , copy deepcopy 的行为不同。让我们通过示例分别讨论它们。

    赋值操作只是将源的引用分配给目标,例如:

    >>> i = [1,2,3]
    >>> j=i
    >>> hex(id(i)), hex(id(j))
    >>> ('0x10296f908', '0x10296f908') #Both addresses are identical
    

    现在 i j 从技术上来说指的是同一个列表。 i j 都具有相同的内存地址。对其中一个的任何更新都将反映在另一个中,例如:

    >>> i.append(4)
    >>> j
    >>> [1,2,3,4] #Destination is updated
    
    >>> j.append(5)
    >>> i
    >>> [1,2,3,4,5] #Source is updated
    

    另一方面, copy 创建 deepcopy 变量的新副本。因此,对原始变量的更改现在不会反映在复制变量中,反之亦然。但是, copy 浅复制 )不会创建嵌套对象的副本,而是仅复制对嵌套对象的引用,而 deepcopy 深复制 )会递归复制所有嵌套对象。

    copy 的行为 deepcopy

    使用复制的平面列表示例:

    >>> import copy
    >>> i = [1,2,3]
    >>> j = copy.copy(i)
    >>> hex(id(i)), hex(id(j))
    >>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are different
    
    >>> i.append(4)
    >>> j
    >>> [1,2,3] #Update of original list didn't affect the copied variable
    

    使用复制的嵌套列表示例:

    >>> import copy
    >>> i = [1,2,3,[4,5]]
    >>> j = copy.copy(i)
    
    >>> hex(id(i)), hex(id(j))
    >>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are still different
    
    >>> hex(id(i[3])), hex(id(j[3]))
    >>> ('0x10296f908', '0x10296f908') #Nested lists have the same address
    
    >>> i[3].append(6)
    >>> j
    >>> [1,2,3,[4,5,6]] #Update of original nested list updated the copy as well
    

    使用 deepcopy 的平面列表示例:

    >>> import copy
    >>> i = [1,2,3]
    >>> j = copy.deepcopy(i)
    >>> hex(id(i)), hex(id(j))
    >>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are different
    
    >>> i.append(4)
    >>> j
    >>> [1,2,3] #Update of original list didn't affect the copied variable
    

    使用 deepcopy 的嵌套列表示例:

    >>> import copy
    >>> i = [1,2,3,[4,5]]
    >>> j = copy.deepcopy(i)
    
    >>> hex(id(i)), hex(id(j))
    >>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are still different
    
    >>> hex(id(i[3])), hex(id(j[3]))
    >>> ('0x10296f908', '0x102b9b7c8') #Nested lists have different addresses
    
    >>> i[3].append(6)
    >>> j
    >>> [1,2,3,[4,5]] #Update of original nested list didn't affect the copied variable    
    
返回
作者最近主题: